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ABSTRACT

The concept of singular, Semi-singular and non-singular bimatrices are introduced. The concept of inverse
bimatrices, reverse order law and some properties of inverses bimatrices are studied. Also the notion of generalized
inverses and some properties of generalized inverse of bimatrices are discussed. The solution of homogeneous and

non-homogeneous system of equations are studied.
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INTRODUCTION

Let Cpxy be the space of nxn complex matrices of order n. For AeCpy,, let A1, AT, A", AT, r(4), R(A)denote the
inverse, transpose, conjugate transpose, Moore-penrose inverse, rank and range space of A respectively. A matrix has its
inverse if |A| # 0 that is, A is non singular. Generalized inverse is a great tool in solving linearly dependent and
unbalanced system of linear equations. It has the ability to find the solution of square matrix when it is singular and
non-square. A solution X of the equation AXA =A is denoted by A~ and is called generalized inverse of A. For AeC, xy,
the Moore-penrose inverse AT of A is the unique solution of the four equation (i) AXA = A, (ii) XAX = A, (iii)(AX)" =
AX, (iv) (XA)" = XA. The concept of a generalized inverse was first introduced by Fredholm (1903), he called a
particular generalized inverse as pseudo inverse which serve as integral operator. However, the concept of an inverse of a
singular matrix seems to have been first introduced by Moore [4,5] in 1920. If A, and A, are any two matrices then the

matrix Ag = A; U A, is said to be bimatrix [7]. A bimatrix A is said to be EP if N(4g) = N(A43)[8].

In this paper the concept of singular, semi-singular, non-singular bimatrices are introduced. The concept of
inverse bimatrices, reverse order law and some properties of inverse bimatrices are studied. Also, the notion of generalized
inverses and some properties of generalized inverses of bimatrices are discussed. The solution of homogeneous and

non-homogeneous system of equations are analysed.

INVERSES OF BIMATRICES
Definition 2.1

Let A be a square bimatrix of order n. Then, Ap is said to be invertible if there exists a square bimarix By of

order n such that
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AgBg = BgAgp = I,

and By is called the inverse of Ag and is denoted by Az?.
Example 2.2
2
LetAp = (2

3 2 1 -1
1) u (0 2 1)
1 5 5 2 =3

2 -1 -1 8 -1 -3
Now, Az! = (-9 7 4) U (-5 1 2)
5 —4 -2 10 -1 —4

It is verified that,

2 2 3 2 -1 -1 2 1 -1 8 -1 -3
ApAp* = (2 1 1) (—9 7 4) u <0 2 1 > (—5 1 2 >
1 3 5 5 —4 =2 5 2 =3 10 -1 -4

1 0 0 1 0 O
=<0 1 0) u (0 1 0)
0 0 1 0 0 1

- IB.

WL N

Definition 2.3

A square bimatrix Ag is said to be singular if the determinant value of both the components are zero.

(That is, |A;] = 0 and |A,| =0).
Definition 2.4

A square bimatrix Az = A, U A, is said to be non-singular if the determinant value of both the components are

non zero.
Definition 2.5

A square bimatrix Ag = A; U A, is said to be semi-singular if the determinant value of either one of the

component is zero.
Properties of the Conjugate Transpose of Bimatrices 2.6
o Ap=Ag
o (Ag+Bg) =A;+B;
o (Mp)=245
o (A3Bp)" = BpA;
e ApAp = 0implies Az =0
o BpApAy = CgAgAy implies BgAp = CpAp

L4 BBAEAB = CBAEAB lmplleS BBAE = CBA*B
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Properties of Inverse of Bimatrices 2.7
Let Ag and Bj be the two bimatrices, then the following holds:
* (ApBp)™' = By'45!
o (Ag)7'=4p
o (kAp)™t =kT'4AR
o (Ap7t =Y
Proof of (i)
Given AgBg = (A, U A,)(B; UB,)
=A,B; UA,B,
(AgBg) ' =(A;B; UA,B,)™ !
=(4:B)" U (4,B,)7!
=B7'A7Y U B;1A3! (since(AB) ' = B71471)
=(Br' UB; (41 U AzY)
(ApBp)™" = Bg'Ap’
Proof of (ii)
At = (A, VA
= A7t U A3t
(A=A v Az
=47t u @)™
=A; U A, (since(A™1)"1 = 4)
(Ap")7" =4
Proof of (iii)
(kAp)™" = [k(A; U A)] ™!
=(kA; UkA,)™?
=(kA) P U (kA
=k TA7T U kTTAG?
=k7H(ATT U AZD

(kAp)™' =k~'Ag"
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Proof of (iv)
AL = (4, U A4)"
=AY U4}
(Ap)~' = (A7 v 4™}
=(ADTuA)!
=(ATH" U (421" (since (AN = (A7)
=(ATtu A7)’
(Ap)~1 = (451

GENERALIZED INVERSES OF BIMATRICES
Definition 3.1

Moore — Penrose inverse of a bimatrix A, is the unique solution of the following equations:

o  AgXpAp =Ap

o XpApXp = Xg

*  (ApXp) =ApXp

*  (XpAp) =XpAp
Definition 3.2

Group inverse of AB , denoted as AB# satisfying the equations,

L4 ABXBAB =AB'
L4 XBABXB =XB'
L4 ABXB= XBAB‘

o If A% exists, then it is unique.

Example 3.3

4 1 2 1 3 2
o a=(11s)u(s 2 o)
31 3 2 6 4

Generalized inverse of Ay is,

Y3 Y3 0\ (%13 33 0
¥ =\ 7Y A5 0|V Shg Tz o0
00 0 0 0 0 0

such that AB XB AB = AB
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Lemma 3.4

Let Ag be an nXn complex bimatrix. Then the following holds :
® Ay =Ag
.4 =ay
o If Ag is non singular, then A}, = A3?
o (A4p)'=2"4A}
o (Apdp)t = AfAl
Proof of (i)
Al = (4, u At
=Alual
(ah)" = (at v al)’
= (4D u (ap)’
=A; UA, (since ATT=A)
(45) =45
Proof of (ii)
A = (A, VA"
=A] UA4;
Ut = (43U 4y
=(ADTu @)t
= (4D u (4h) (Since A*T= (41)")
- (Al v Aty
= ((Ay v AT
= (a})
Ay’ = (a5)
Proof of (iii)

Given A, is non singular bimatrix =>both A, and A, are non singular matrices.

Impact Factor(JCC): 1.5548 - This article can be downloaded from www.impactjournals.us




Ramesh G & Anbarasi N

AJ{a = (4, U4t
=ATu Al
By lemma (1.3) of [8],
At =4,"and AT = 4,71
= AL = A7t u Azt
=(4, U4,
Al =451
Proof of (iv)
(/11413)Jr =[2(4, v Az)]Jr
= (14, U 14,)t
=(14)T U (14,7
= AtAT u atAl (since (14)T = ATAT)
=t(aTu al)
(AAp) =114},
Proof of (v)
ApAp = (A1 U A3)(4; U 4y)
=A714; U A3A,
(ApAp)T=(A14; U A34,)1
=(A1ADT U (434,)1
=ATAT" U ATAT" (since(A*A)T = AtAt)
_(af U AL (AT U AT)
=(4] v A})(a v A}y
(Apap)t = ALAY
Lemma 3.5 [10]
Let A be an nXn complex matrix. Then the following statements are equivalent:
e AisEP.

e A"isEP.
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o 1[4 A"] =7r[A].

e ATisEP.

o AAY = ATA

o At = 4%,
Theorem 3.6

Let AB be an nXn complex bimatrix. Then the following are equivalent:
e Ap is EP bimatrix
o (4p4})" = a3(ab)’
* (AEAB)Z = (AE)ZAé
Proof
Let Ay = A U A, be an nXn complex bimatrix.
To Prove (i) =(ii)
If A is EP then AAT = ATA (By lemma 3.5)
Hence (4,41)° = (4,47 U 4,41)"
= (AlADZ U (AzAer)z
= (AlAD (AlAD U (AzAer)(AzAD
= 4,(Al A)AT U A,(A%A,)A]
= 4;(4,41)AT U 4,(4,40)4]
= A2 AT* U A% AT?
= (42 u AD (Al u Al?)
(ABAE)Z = Ag AEZ
To Prove (ii) = (i)
Suppose Ap satisfies (ii)
Note that (45A4%) =A,4F,
That is, Az AL =423 (A})*

= A, AT U A,AT = A2 AT U A3 AT
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Post-multiply both sides by AgAp = A;47 U A, A we get

(4,AT U A,AY) (4,45 U A, A5)=(42 AT? U 43 AT?) (4,45 U A, 43)
AATAAL UAAT A, Ay = A2 ATPA,45 U A% Al A, 43

Now use the fact that AATA = A and ATAA* = A" we get

A AL UA, Ay = A2 AT A u A2 AS 43

(A1 U Az) (47 U A3) = (A7 U A3)(A] U A]) (47 U 43)

Ap Ay = A§ AL A3

Then it follows by equation (1.4) of lemma (1.2) of [10] that

r(AgAy — AZALAL) = r[(A,45 U 4, Ay) — (A2 AT A7 U A3 AT 43)]
=r[(A4] — A AT AD) U (4,43 - A3 A7 43)]

=r(4,4] — A24147) U (4,45 — A3A%43)

A1A A7 A’{Ai]
= — r(4,) U
"l azar oA r(d) U r

43424, A4,

. 2[=r@) 3.0)
AZA5 AZAZ] (42)

Observe that

ca WAL aea as AsA,
AlAlAl] (A*)* |2l AZAZAZ] (A*)* i
A24r |\ T[] Aza4; |\72 2
A*A * * A*A * *
d 121 A* _ AlAlAl . 222 A* _ A2A2A2
B R R VS M IR I W77
* * AlA . . A5A
tonce g [AidiAi] _ o [0] o rasdaazy o [4200
T agay [T AP agay 1T A

According to equation (1.12) of lemma (1.2) in [10], then the equation (3.1) is reduced to

414, A4y
Al A4

434, A4

* toae) _
r(Apdy — AZALA) =71 2 A

]— r(A) ur ]— r(4z)

= (7 1 a) = rcan v ([42] 142 430) = ra
= (A AT TAy A3D) = r(4) U (4, 451" [4, 43D = r(4))
= (4, A7) = 7(4) U T ({4, 43D — 7 (4))

={r([A; A1D U r([4; 43D} — {r(A) UT(4;)}

=71 [Ap Ap] — 7(4p)
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= r(Agdy — AZALAL) = r[Ag A3l — 7(4p)
Hence AgAy = AZAL A% is equivalent to r [Ag Ap] = 7(Ap)
By (i) and (iii) of lemma (3.5),
Apg is EP bimatrix.
To Prove (i) =(iii)
If A is EP then AAT = ATA (By lemma 3.5)
Hence (A5A4,)" = (414, U Al4,)”
= (AIAl)Z U (AerAz)z
= (414,) (414;) U (414;)(Al4,)
= AT(A1A)A; U AY(A;A7) 4,
= AJ(A] A,)A, U AL(AD 4,)A,
=A?A2 u Al?A3
= (A1* v Al?) (42 U 43)
(ABAE)Z =A£2 A%
To Prove (iii) =(i)
Suppose Ap satisfies (iii)
We have (4,45) =4, 4%
That is, Az AL =42 (A})*
= A, AT U A,AT = A2 AT U A3 AT
Pre-multiply both sides by Ay Ag = A7 A, U A3 A, we get
(A} AL U Ay Ay) (4,47 U 4,A0) = (47 AU 45 A45)(4% AT U A% ATP)
A7 AL (ALA) U A3Az (4,A47) = ATA (AT AT") U A3 4, (A3 AT7)

2 2
A A (ATAD) U 454, (A Ay) = AjA1(4; AT) U A34,(4, AD)

2 2
A ALATAL U A3A,A5 A, = AAL(AT A))7 U A3A,(4AT 4,)
A AATA U A5 A,ATA, = A5ALATPAZ U A ALATT A

Now apply AATA = A and A*AAT = A* we get

Impact Factor(JCC): 1.5548 - This article can be downloaded from www.impactjournals.us




| 86 Ramesh G & Anbarasi N
= AA, U AyA, = AATAZ U A AL A2
(A7 UA3)(A, U 4p) = (A7 U A)(AT U AT)(43 U 4D)
Ay Ay = Ay AL A2
Then it follows by equation (1.4) of lemma (1.2) of [10] that
r(Ay Ap — ApAL AZ) = r[(A34, U A34;) — (A5 ATAZ U 4348 A3)]
=7[(A] Ay — A5AT A2) U (45 A, — A3AS A3)]
= (414, — A{A]AT) Ur(Az4, — A3A743)
_ .. [A1A:1A] A’{Ai] _
=T 4 aia,l T TADV
A3Az A5 AEA%] _
Ak Aod, r(4,) (3.2)

Observe that

(A1) [434,4; AjA3] = [4,4; A3

and 43[4, 47 A2] = [A34,4; 4342

similarly,

(AD) (434,45 A3A%] = [A,45 A%

and A3 [4,4; A3l = [A34,4; A3A%]

Hence, R[A;A,A; A;A?] =R[AA; A3]

and R[A3A,A5 ALA%] = R[A,A; A3]

According to equation (1.12) of lemma (1.2) in [10], then the equation(3.2) is reduced to

A A7 Af
ALA, AL,

A4y A3

* _ * 1T 42 —
r(ApAp — ApALAR) =71 A4S AL A,

]— r(A) Ur ]— r(4,)

= ([t 1) = rea oo (|2 13 42) = ra
=7([A] A ]"[A] A1D) —r(4y) Ur([45 A,]7[45 A,]) — r(4)
=r([A] AD) —r(A) Ur([A3 4;]) —r(4,)

={r([A1 AD ur([A43 A;.D} = {r(A) UT(4;))

=1 [Ap Ag] — r(4p)

= r(ApAp — ARAL AZ) = 1[4} Ag] — T(Ap)
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Hence AAg = AEAE A% is equivalent to r [Af Ag] = 1(4p)
= Ap is EP bimatrix.

Theorem 3.7

Let Az = A; U A, be a bimatrix, then the four equations
Ap X Ap = Ap (3.3)
Xg Ap Xg = X3 (34)
(Ap Xp)" = Ap Xp (3.5)
(XpAp)" = XpAg (3.6)

Proof

have a unique solution for any 4g.

First to show that equations (3.4) and (3.5) are equivalent to the single equation,
Xg Xg A = Xp

On Substituting (3.5) in (3.4) we get,

Xp(Ap Xp) = Xp

Xp(Ap Xp)" = Xp

Xp Xg Ay = X

Conversely,

(3.7) > Xz Xz Ay = X3

Ap Xg Xp Ap = Ag X3

(Ap Xg)(Ap Xp)" = Ap Xp

(Ap Xp) (Ap Xp) = Ap Xp

Xp Ap Xp = Xp

which gives (3.4)

Thus, (3.4) and (3.5) are equivalent to Xz XgAp = Xp
Similarly from (3.3) and (3.6)

Xp Ap Ay = (Xp Ap)"Ap

= A} X; 4

= (Ap Xp Ap)”

(Since by (3.5))

(3.7)

(Since by (3.5))
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relation

written a

Note 3.8

XgAp Ay = A (3.8)
Thus, it is sufficient to find an Xj satisfying (3.7) and (3.8). Such an X exists if a Bg can be found satisfying,
BpAp AgAp = Ap

For then X =B A} satisfies (3.8). Also we have seen that (3.8) implies,

Ap X Ay = Ap

and therefore By Ay X5 Ay = BgAjg

Thus, Xp also satisfies (3.7).

Now, the expressions (ApAg), (A Ag)?,(Ay Ag)3,...cannot all be linearly independent that is, there exists a

MAy Ag + 2,(Ay Ap)*+,...+A (A Ap)¥ = 0,(3.9)

where 1,,4,,...,4, are not all zero.

Let A,.be the first non zero A4 and put

Bp = —A;"{Ari1] + A4 (A Ap) + - + A (A5 Ap)*771}

Thus, (3.9) gives Bg (A Ap)"*t = (A5 Ap)T

Apply (vi)and (vii ) of (2.6) repeatedly we obtain,

BgAp ApAp = Ap

To show that Xp is unique, we suppose that Xy satisfies (3.7) and (3.8) and that Yy satisfies,
Y = ApYgYy and Ap=Af AgYy

These relations are obtained by substituting (3.6) in (3.4) and (3.5) in (3.3) respectively.
Now, Xp = XgXpAg

=XpX5Ap ApYp

=Xp ApYp

=Xp ApAgYgYs

The unique solution of (3.3),(3.4),(3.5)and (3.6) is called the generalized inverse of Ag(abbreviated as g.i) and
s Xp = Al

In the above lemma,
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e  Agneed not be a square bimatrix and may even be zero.
e  Use the notation At for scalars, where AT means 171 if A # 0 and 0 if 1 = 0.
Theorem 3.9

Let Ay = A UA,, Bg = B UB, and Cz = C; U C, are bimatrices. A necessary and sufficient condition for the

equation Ag Xz By = Cp to have a solution is,
ApALCyBIBy = Cp
in which case the general solution is,
Xp = Al Cy Bi+Yy-Al Ay Yy By B,
Where Y3 is arbitrary.
Proof
Suppose X satisfies Ag X By = C
Then Cg = ApXpBp
= AgAY, AgXyBy B} By
Cy = AgAlCyB/ By
Conversely, if Cp = Ap A; Cp Bg Bg, then A; Cp Bg is a particular solution of Ag Xz By = Cp
For the general solution, we have to solve AgXgBg = 0
Now, any expression of the form
Xy =Yy — ALY;BIBy
Satisfies AgXgBg = 0.
And conversely if AzXpBg = 0 then,
Xy = X — AL ApXyBpB].
Theorem 3.10

Let A1 X, = B; and A,X, = B, be two system of equations and can be written asdAp Xz = Bp, where
Ap = A; U A, be a co-efficient bimatrix, Xz = X U Y be a unknown bimatrix and B, = B, UB, be a column
bimatrix. And let Augy = [A1 B;] U [A, B,] be the augmented bimatrix of the two systems. If the components of

augmented bimatrix are equivalent then both the systems has the same solution.

In particular, for the homogeneous system of equations, if the components of co-efficient bimatrix are equivalent

then the system must have the unique solution.
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Note 3.11

For the non homogeneous system of equations, if the components of augmented bimatrix are not equivalent then

both the systems need not have same solution.

Example 3.12

Let the two system of equations be,

2x1 4+ 3x,— x3=5; x4+ 2x,+ x3 =8
4xy + 4x, — 3x3 =3; 2x; + 3x, +4x3 =20
2x1 — 3x, +2x3 =2; 4x; + xp, +2x3 =12
This can be written as

AgXp = Bg

2 2 3 21 -1 X1 5 8
Where Ay = (2 1 1) u (0 2 1 ), X= <x2>, Bg= <3> u (20)
1 3 5 5 2 =3 X3 2 12

The solution is x;=1, X, = 2, x3=3
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